Корично изображение Електронна книга

Information theory : structural models for qualitative data /

Krippendorff introduces social scientists to information theory and explains its application for structural modeling. He discusses key topics such as: how to confirm an information theory model; its use in exploratory research; and how it compares with other approaches such as network analysis.

Основен автор: Krippendorff, Klaus.
Формат: Електронна книга
Език: English
Публикувано: Beverly Hills, Calif. : Sage Publications, ℗♭1986.
Серия: Quantitative applications in the social sciences ; no. 07-062.
Предмети:
Онлайн достъп: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=24722
Подобни документи: Print version:: Information theory.
Съдържание:
  • Foreword
  • 1. Qualitative data
  • 2. Selective information
  • 3. Entropy, diversity, variety
  • 4. Shannon's theory of communication
  • Noise and equivocation
  • Information transmitted
  • Redundancy
  • 5. Comparisons of qualitative variates
  • Informational distance
  • Informational bias
  • 6. Structural models
  • Parameters
  • Composition
  • Interactions
  • Relations between models: descendency
  • Lattices
  • 7. Models with and without loops
  • 8. Information in models and in data
  • 9. Structural zeros
  • 10. Degrees of freedom
  • 11. The significance of information quantities
  • 12. Maximum entropy computations
  • Models without loops and without structural zeros
  • Models with loops or with structural zeros
  • 13. Confirmation
  • The goodness of fit of a model
  • The amount of information modeled
  • The complexity of a model's components
  • The contributions a component makes
  • The strength of relations (association)
  • The amount of interaction
  • Strata within models
  • 14. Exploration
  • Searching for the ordinalities of appropriate models
  • Searching for optimum models
  • Algebraic techniques
  • 15. Comparisons with alternative approaches
  • Network and path analyses
  • Chi-square
  • Analysis of variance
  • Log-linear modeling
  • The most basic reference possible.