A Guide to Topology /
Основен автор: | Krantz, Steven G. |
---|---|
Формат: | Електронна книга |
Език: | English |
Публикувано: |
Cambridge :
Cambridge University Press,
2012.
|
Серия: |
Dolciani mathematical expositions.
|
Предмети: | |
Онлайн достъп: |
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450275 |
Подобни документи: |
Print version::
Guide to Topology. |
Съдържание:
- ""Preface""; ""Contents""; ""1 Fundamentals""; ""1.1 What is Topology?""; ""1.2 First Definitions""; ""1.3 Mappings""; ""1.4 The Separation Axioms""; ""1.5 Compactness""; ""1.6 Homeomorphisms""; ""1.7 Connectedness""; ""1.8 Path-Connectedness""; ""1.9 Continua""; ""1.10 Totally Disconnected Spaces""; ""1.11 The Cantor Set""; ""1.12 Metric Spaces""; ""1.13 Metrizability""; ""1.14 Baire�s Theorem""; ""1.15 Lebesgue�s Lemma and Lebesgue Numbers""; ""2 Advanced Properties of Topological Spaces""; ""2.1 Basis and Subbasis""; ""2.2 Product Spaces""; ""2.3 Relative Topology""
- ""2.4 First Countable, Second Countable, and So Forth""""2.5 Compactifications""; ""2.6 Quotient Topologies""; ""2.7 Uniformities""; ""2.8 Morse Theory""; ""2.9 Proper Mappings""; ""2.10 Paracompactness""; ""3 Moore-Smith Convergence and Nets""; ""3.1 Introductory Remarks""; ""3.2 Nets""; ""4 Function Spaces""; ""4.1 Preliminary Ideas""; ""4.2 The Topology of Pointwise Convergence""; ""4.3 The Compact-Open Topology""; ""4.4 Uniform Convergence""; ""4.5 Equicontinuity and the Ascoli-Arzela Theorem""; ""4.6 The Weierstrass Approximation Theorem""; ""Table of Notation""; ""Glossary""