A quantum groups primer
Self-contained introduction to quantum groups as algebraic objects, suitable as a textbook for graduate courses.
Основен автор: | Majid, Shahn. |
---|---|
Формат: | Електронен |
Език: | English |
Публикувано: |
Cambridge ; New York :
Cambridge University Press,
2002.
|
Серия: |
London Mathematical Society lecture note series ;
292. |
Предмети: | |
Онлайн достъп: |
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552539 |
Подобни документи: |
Print version::
Quantum groups primer. |
Съдържание:
- Coalgebras, bialgebras and Hopf algebras. Uq(b+)
- Dual pairing. SLq(2). Actions
- Coactions. Quantum plane A2q
- Automorphism quantum groups
- Quasitriangular structures
- Roots of Unity. uq(sl2)
- q-Binomials
- Quantum double. Dual-quasitriangular structures
- Braided categories
- (Co)module categories. Crossed modules
- q-Hecke algebras
- Rigid objects. Dual representations. Quantum dimension
- Knot invariants
- Hopf algebras in braided categories
- Braided differentiation
- Bosonisation. Inhomogeneous quantum groups
- Double bosonisation. Diagrammatic construction of uq(sl2)
- The braided group Uq(n- ). Construction of Uq(g)
- q-Serre relations
- R-matrix methods
- Group algebra, Hopf algebra factorisations. Bicrossproducts
- Lie bialgebras. Lie splittings. Iwasawa decomposition
- Poisson geometry. Noncommutative bundles. q-Sphere
- Connections. q-Monopole. Nonuniversal differentials.