Корично изображение Електронен

Local analysis for the odd order theorem

In 1963 Walter Feit and John G. Thompson proved the Odd Order Theorem, which states that every finite group of odd order is solvable. The influence of both the theorem and its proof on the further development of finite group theory can hardly be overestimated. The proof consists of a set of prelimin...

Пълно описание

Основен автор: Bender, Helmut, 1942-
Други автори: Glauberman, G., 1941-, Carlip, Walter, 1956-
Формат: Електронен
Език: English
Публикувано: Cambridge [England] ; New York : Cambridge University Press, 1994.
Серия: London Mathematical Society lecture note series ; 188.
Предмети:
Онлайн достъп: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552530
Подобни документи: Print version:: Local analysis for the odd order theorem.
Съдържание:
  • Ch. I. Preliminary Results. 1. Elementary Properties of Solvable Groups. 2. General Results on Representations. 3. Actions of Frobenius Groups and Related Results. 4. p-Groups of Small Rank. 5. Narrow p-Groups. 6. Additional Results
  • Ch. II. The Uniqueness Theorem. 7. The Transitivity Theorem. 8. The Fitting Subgroup of a Maximal Subgroup. 9. The Uniqueness Theorem
  • Ch. III. Maximal Subgroups. 10. The Subgroups M[subscript [alpha]] and A[subscript [sigma]]. 11. Exceptional Maximal Subgroups. 12. The Subgroup E. 13. Prime Action
  • Ch. IV. The Family of All Maximal Subgroups of G. 14. Maximal Subgroups of Type [actual symbol not reproducible] and Counting Arguments. 15. The Subgroup M[subscript F]. 16. The Main Results
  • App. A: Prerequisites and p-Stability
  • App. B: The Puig Subgroup
  • App. C: The Final Contradiction
  • App. D: CN-Groups of Odd Order
  • App. E: Further Results of Feit and Thompson.