Корично изображение Електронна книга

Metric scaling : correspondence analysis /

Three methods of metric scaling - correspondence analysis, principal components analysis and multiple dimensional preference scaling - are explored in detail for their strengths and weaknesses over a wide range of data types and research situations.

Основен автор: Weller, Susan C.
Други автори: Romney, A. Kimball
Формат: Електронна книга
Език: English
Публикувано: Newbury Park, Calif. : Sage Publications, ℗♭1990.
Серия: Quantitative applications in the social sciences ; no. 07-075.
Предмети:
Онлайн достъп: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=24745
Подобни документи: Print version:: Metric scaling.
Съдържание:
  • 1. Introduction
  • Some sample results
  • Some background comments
  • The central unifying theme of the monograph
  • 2. The basic structure of a data matrix
  • Basic structure of a matrix
  • Transformations
  • 3. Principal components analysis
  • Single factor example
  • Multifactor example
  • 4. Multidimensional preference scaling
  • 5. Correspondence analysis of contingency tables
  • The mechanics of correspondence analysis
  • The reconstruction of expected and observed data
  • Another perspective: The case approach with indicator variables
  • 6. Correspondence analysis of nonfrequency data
  • Correspondence analysis of rank-order data
  • Correspondence analysis of proximities
  • 7. Ordination, seriation, and Guttman scaling
  • The horseshoe effect
  • Guttman scaling as a special case of correspondence analysis
  • An invariance property of multiple-way indicator matrices
  • 8. Multiple correspondence analysis
  • Multiple comparisons using "stacked" matrices
  • A few final words.